Investigating the effect of particle size on pulmonary surfactant phase behavior.

نویسندگان

  • Akihisa T Kodama
  • Chin-Chang Kuo
  • Thomas Boatwright
  • Michael Dennin
چکیده

We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of effect of tween 80 on characteristics of tadalafil 0.1% suspension

Tadalafil is a phosphodiesterase 5 inhibitor used orally as solid dosage form. The suspension of this drug has been used for pulmonary arterial hypertension treatment in pediatrics. The aim of this work was to investigate the influence of non-ionic surfactant (Tween 80) on the physical characteristics, drug particle size, and stress-shear rate rheogram of tadalafil 0.1% suspension. Several form...

متن کامل

Preparation of Hexanitrohexaazaisowurtzitane (HNIW) Nano Particle by Normal Microemulsion Based Nonionic Surfactant

The behavior of nanoscale energetic materials is quite different from micronsized energetic materials in many ways. Recently, some techniques such as sol-gel method, high speed air impaction and vacuum codeposition have been employed to obtain nanoscale energetic materials. However, only few attentions were paid to nanoscale energetic materials because of the fabrication difficulty. In this pap...

متن کامل

Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery

In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. ...

متن کامل

Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery

In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. ...

متن کامل

Effect of Surfactant Type, Cholesterol Content and Various Downsizing Methods on the Particle Size of Niosomes

The present study was conducted to investigate the performance of different size reduction techniques including probe sonication, extrusion, and high pressure homogenization for nanosizing of niosomes. Also, the effects of cholesterol content and surfactant type on the size and poly dispersity index (PDI) of the formulations were evaluated. Various niosomal formulations composed of Brij 72, Spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 107 7  شماره 

صفحات  -

تاریخ انتشار 2014